
Chapter in ’Contemporary
HPC Architectures’

2

Contents

1 FutureGrid - a reconfigurable testbed for Cloud, HPC and
Grid Computing 1
Geoffrey C. Fox, Gregor von Laszewski, Javier Diaz, Kate Keahey, Jose

Fortes, Renato Figueiredo, Shava Smallen, Warren Smith, and Andrew
Grimshaw

1.1 Overview . 2
1.1.1 Sponsor/Program background 3
1.1.2 Historical Aspects of Clouds - Grids - HPC 3

1.2 Hardware Resources . 4
1.3 Software Services . 5

1.3.1 Architecture Overview 9
1.3.2 Access Services . 10

1.3.2.1 Access Service Demand 11
1.3.2.2 Infrastructure as a Service 11
1.3.2.3 Platform as a Service 14

1.3.3 Management Services 16
1.3.3.1 Dynamic Image Provisioning with RAIN . . 16
1.3.3.2 Monitoring, Information, and Performance

Services . 23
1.3.4 Experiment and Project Management 25

1.3.4.1 Interactive Experiment Management 26
1.3.4.2 Workflow-Based Experiment Management . . 26
1.3.4.3 DevOps-Based Experiment Management . . 27
1.3.4.4 Rain-Based Experiment Management 27

1.3.5 Operations Services 27
1.3.6 Development Services 28
1.3.7 Portal . 28

1.4 Service Deployment . 29
1.5 Applications using FutureGrid 29

1.5.1 Privacy preserving gene read mapping using hybrid
cloud . 30

1.5.2 SAGA on FutureGrid 32
1.6 Optimizing MapReduce . 33
1.7 Sensor Cloud . 34
1.8 Educational Outreach . 34

i

ii

1.9 Operational Lessons. We have already learnt several unex-
pected lessons. 37

Bibliography 39

Index 45

Chapter 1

FutureGrid - a reconfigurable testbed
for Cloud, HPC and Grid Computing

Geoffrey C. Fox

Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.

Gregor von Laszewski

Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.
E-mail: laszewski@gmail.com

Javier Diaz

Pervasive Technology Institute, Indiana University
2729 E 10th St., Bloomington, IN 47408, U.S.A.

Kate Keahey

Argonne National Laboratory, Argonne, IL

Jose Fortes

University of Florida, Gainesville, FL

Renato Figueiredo

University of Florida, Gainesville, FL

Shava Smallen

San Diego Super Computing Center, San Diego, CA

Warren Smith

Texas Advanced Computing Center, Austin, TX

Andrew Grimshaw

University of Virginia, Charlottesville, VA

1.1 Overview . 2
1.1.1 Sponsor/Program background . 3

1.1.2 Historical Aspects of Clouds - Grids - HPC . 3
1.2 Hardware Resources . 3
1.3 Software Services . 4

1

2 Chapter in ’Contemporary HPC Architectures’

1.3.1 Architecture Overview . 8
1.3.2 Access Services . 10

1.3.2.1 Access Service Demand . 11
1.3.2.2 Infrastructure as a Service . 11
1.3.2.3 Platform as a Service . 14

1.3.3 Management Services . 16
1.3.3.1 Dynamic Image Provisioning with RAIN 16
1.3.3.2 Monitoring, Information, and Performance Services 23

1.3.4 Experiment and Project Management . 25
1.3.4.1 Interactive Experiment Management . 26
1.3.4.2 Workflow-Based Experiment Management 26
1.3.4.3 DevOps-Based Experiment Management 26
1.3.4.4 Rain-Based Experiment Management 27

1.3.5 Operations Services . 27
1.3.6 Development Services . 28
1.3.7 Portal . 28

1.4 Service Deployment . 28
1.5 Applications using FutureGrid . 29

1.5.1 Privacy preserving gene read mapping using hybrid cloud 30
1.5.2 SAGA on FutureGrid . 32

1.6 Optimizing MapReduce . 33
1.7 Sensor Cloud . 33
1.8 Educational Outreach . 34
1.9 Operational Lessons. We have already learnt several unexpected lessons. 36

Acknowledgement . 37

xf

1.1 Overview

The FutureGrid project [vLFW+10] mission is to enable experimental work
that advances:

• innovation and scientific understanding of distributed computing and
parallel computing paradigms,

• the engineering science of middleware that enables these paradigms,

• the use and drivers of these paradigms by important applications, and,

• the education of a new generation of students and workforce on the use
of these paradigms and their applications.

The implementation of the mission includes

• distributed flexible hardware with supported use,

• identified Infrastructure as a Service (IaaS) and Platform as a Service
(PaaS) core software with supported use,

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 3

• a growing list of software from FutureGrid partners and users, and

• educational outreach. ¡

Thereby the FutureGrid project provides a capability that makes it possi-
ble for researchers to tackle complex research challenges in computational
and computer and computational science related to the use and technology
of High Performance Computing (HPC) systems, Grids [FK99], and clouds
[AFG+09, KH11]. Topics range from programming models, scheduling, vir-
tualization, middleware, storage systems, interface design and cybersecurity,
to the optimization of Grid-enabled andxfgg cloud-enabled computational
schemes for researchers in astronomy, chemistry, biology, engineering, atmo-
spheric science and epidemiology.

1.1.1 Sponsor/Program background

FutureGrid [wwwb] is sponsored by the National Science Foundation un-
der Grant No. 0910812 [nsf09] to Indiana University for “FutureGrid: An
Experimental, High-Performance Grid Test-bed.” FutureGrid forms part of
NSF’s national high-performance cyberinfrastructure XSEDE [xse12]. It in-
creases the capability of the XSEDE to support innovative computer science
research requiring access to lower levels of the grid software stack, the net-
working software stack, and to virtualization and workflow orchestration tools
as well as new programming models like MapReduce [DG08]. As it supports
interactive use, it is well suited for testing and supporting distributed system
and scientific computing classes. Education and broader outreach activities
include the dissemination of curricular materials on the use of FutureGrid,
pre-packaged FutureGrid virtual machines (appliances) configured for par-
ticular course modules, and educational modules based on virtual appliance
networks and social networking technologies [SBC+03, BFLK11].

Partners in the FutureGrid project include U. Chicago, U. Florida, San
Diego Supercomputer Center - UC San Diego, U. Southern California, U.
Texas at Austin, U. Tennessee at Knoxville, U. of Virginia, Purdue I., T-U.
Dresden, and Grid5000 [imp12b]. These cover hardware, software and bench-
marking.

1.1.2 Historical Aspects of Clouds - Grids - HPC

One of the unique aspects of FutureGrid is that it is not nly targeted to-
wards the use of High Performnce computing but also towards the integration
of Clouds and Grids. The concepts from these areas are strongly intercon-
nected and can be put in a historical context as shown in Figure 1.1.

4 Chapter in ’Contemporary HPC Architectures’

IBM introduces virtualization
to improve mainframe

utilization

CP-40
IBM/360-67 invludes virtual

memory

Semaphores

IBM System/370; OpenVMS

RPC

Dataflow

Monitors

MPP

Client Server Computing

Parallel Fortran

VPN Term: Cloud Computing

Term: Metacomputing

Globus

Term: Grid

x86 virtualization by Vmware

FutureGrid

XSEDE TeraGrid

Amazon WS

Amazon EC2

Google Apps

Eucalyptus

OpenNebula

Nimbus

Term: Public Utility

MPI

MPI-2

Xen

KVM CoG Kits/jglobus

1960 1970 1980 1990 2000 2010

Selected Key Events in HPC - Grid - Cloud Computing

source:	 G.	 von	 Laszewski	

FIGURE 1.1: Selected key events in HPC, Grid, and Cloud computing

1.2 Hardware Resources

FutureGrid (FG) is a national-scale Grid and cloud test-bed facility that
includes a number of computational resources at distributed locations (see
Table 1.1). The FutureGrid network is unique and can lend itself to a mul-
titude of experiments specifically for evaluating middleware technologies and
experiment management services [vLFW+10]. This network can be dedicated
to conduct experiments in isolation, using a network impairment device for
introducing a variety of predetermined network conditions. Figure 1.2 depicts
the network infrastructure, Table 1.1 lists computational resources and Table
1.2 the storage resources. All network links within FutureGrid are dedicated
(10GbE lines for all but to Florida, which is 1GbE), except the link to TACC.
The significant number of distinct systems within FutureGrid provide a het-
erogeneous distributed architecture and are connected by high-bandwidth net-
work links supporting distributed system research. One important feature to
note is that some systems can be dynamically provisioned, e.g. these systems
can be reconfigured when needed by special software that is part of Future-
Grid with proper access control by users and administrators. A Spirent H10
XGEM Network Impairment emulator [imp12c] co-located with the core router
[jun12], a central resource to introduce network latency, jitter, loss, and errors
to network traffic within FutureGrid.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 5

XSEDE PacketNet

Internet 2

Indiana GigaPOP

FutureGrid
Core Router

Impairments
Simulator

(NID)
Core

Peers

Sites

Texas
Advanced
Computing

Center

San Diego
Supercompu

ter Center

University
of Chicago

Indiana
University

University
of Florida

CENIC/NLR
WaveNet FLR/NLR

FrameNet
IPGrid

FIGURE 1.2: Network Infrastructure of FutureGrid

1.3 Software Services

In order for FG to operate we have to conduct a number of activities
related to developing, deploying and supporting the software for FG.

The goal set by FG is to provide a “an experimental Grid, Cloud, and
HPC testbed”. This goal has naturally a direct impact on our software de-
sign, architecture, and deployment. Hence, we revisit some of the elementary
requirements influenced by the user community, various access models and
services, and the desire to be able to conduct a variety of reproducible exper-
iments. These requirements include:

Support a Diverse User Community. As part of our initial investiga-
tions, we have identified a number of different user communities that
will benefit from a testbed such as FG. Naturally, the desire to support
these communities governs our software design and the access to FG in
general. We support the following communities:

• Application developers that investigate the use of software and services
provided by FG;

6 Chapter in ’Contemporary HPC Architectures’

TABLE 1.1: Current Compute Resources of FutureGrid as of April 2012
Name System Nodes CPU’s Cores TFLOPS RAM Site

Type GB
india IBM iDataplex 128 256 1024 11 3072 IU
hotel IBM iDataplex 84 168 672 7 2016 UC
sierra IBM iDataplex 84 168 672 7 2688 SDSC
foxtrot IBM iDataplex 32 64 256 3 768 UF
alamo Dell PowerEdge 96 192 768 8 1152 TACC
xray Cray XT5m 1 168 672 6 1344 IU
bravo HP Proliant 16 32 128 1.7 3072 IU
delta GPU Cluster 16 32 192 TBD 3072 IU

14336∗

Total 457 1080 4384 >43.7 17184
14336∗

*GPUS

TABLE 1.2: Storage Resources of FutureGrid as of April. 2012
System Type Capacity(TB) File System Site

Xanadu 360 180 NFS IU
DDN 6620 120 GPFS UC
Sunfire x4170 96 ZFS SDSC
Dell MD3000 30 NFS TACC
IBM dx360 M3 24 NFS UF

• Middleware developers that investigate the development of middleware
and services for Cloud and Grid computing;

• System administrators that investigate technologies that they wish to
deploy into their own infrastructure;

• Educators that like to expose their students to software and services to
Cloud and Grid computing technologies as offered on the FG; and

• Application users that like to test out services developed by application
and middleware developers.

To support this diverse community we have identified a number of key re-
quirements we will be focusing on as part of FutureGrid.

Support for Shifting Technology Base. One of the observations that
motivated FG is the rapidly developing technologies in the cloud and
Grid that may have profound impact on how we develop the next
generation scientific applications keeping these new developments in
mind. The introduction of virtualization [AA06, CB09, cC05], Infras-
tructure as a Service (IaaS), and Platform as a Service (PaaS) paradigms
[LKN+09, KH11] calls for the ability to have access to software tools and
services that allow a comparison of these paradigms with traditional
HPC methodologies.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 7

Support a Diverse Set of Interface Methods. Based on this technology
shift and the interest posed by the various user communities to have
easy interfaces to a testbed, we need to develop, as part of our software
activities, appropriate interface tools and services. The interfaces include
command line tools, APIs, libraries and services. In addition, many users
would like access to these new technologies through portals or GUIs.

Support a Diverse Set of Access Methods. While in previous decades
the focus has been to provide convenient libraries, tools, and Web ser-
vices we currently see an expansion into infrastructure and platform
as services. Thus, a new generation of tools and services are provided
as abstractions to a higher level of services, potentially replacing the
traditional OS. Thus, we will not only offer access to Infrastructure as
a Service (IaaS) framework, but we will also invest in providing PaaS
endpoints, thereby allowing access to a new kind of abstraction.

Support a Diverse Set of Access Services. ue to the rapid development of
new tools, services, and frameworks within the Grid and cloud communi-
ties, it is important to facilitate a multitude of such environments. This
includes access to IaaS frameworks such as Nimbus [wwwc], Eucalyp-
tus [wwwf], OpenNebula [wwwg], OpenStack [wwwh]; PaaS frameworks
such as Hadoop [wwwa]; and additional services and tools like Unicore
[OR02] and Genesis II [imp12a], that are provided and supported by the
FG team members. Hence, users will have the ability to investigate a
number of different frameworks as part of their activities on FG.

Support of Traditional Services. We provide a number of additional ser-
vices that users are accustomed to. This includes High Performance
Computing (HPC) services [Com12], but also access to backup and stor-
age. Naturally, we provide services for user support as part of a portal
with access to information including a ticket system.

Support for Persistent Services and Endpoints. One of the potential
assets of FG is the ability to expose a number of students and prac-
titioners to the new frameworks offered. However, the entry to set up
such systems may have to be low in order to interest others in using
such technologies. Hence, it is important to offer a number of persistent
services and endpoints of such frameworks. Furthermore, we must make
it easy for the teachers and administrators of FG to manage member-
ship and access rights to such endpoints. In addition, we are interested
in providing a number of “standard” images for educational purposes
that can be used for teaching about particular aspects.

Support for Raining/Dynamic Provisioning. As we are not only inter-
ested in offering a single pre-installed OS or IaaS framework, we must
provide additional functionality to reassign service nodes to a particu-
lar framework. To support this implicit move of resources to different

8 Chapter in ’Contemporary HPC Architectures’

services, we we need to offer dynamic provisioning within FG not only
within an IaaS framework, such as Nimbus, Eucalyptus or OpenStack,
but also any OS we choose. Furthermore this concept can be expanded
to provision additional platforms and services. Hence, we use the term
“raining” instead of just dynamic provisioning to indicate that we strive
to dynamically provision not only on the OS level, but also on the ser-
vice and platform level [vLFW+10]. This combination will will allow us
to provide efficient assignment of resources to services governed by user
needs. Thus, if there is no demand for running Eucalyptus staged images,
the resources devoted to the Eucalyptus cloud can be de-registered and
assigned to a different service. An additional aspect of our “rain” tool
that we are developing is to specify the mapping onto specific resources,
allowing us to compare services on the same hardware.

Support for a Viral User Contribution Model. User contributions are
possible at several levels. First, the development of shared images that
are instantiated as part of an IaaS framework. Second, the development
of middleware, either in the IaaS or PaaS models, that can be rained
onto FG. Third, the creation of workflows that utilize a combination of
the services offered as part of sophisticated experiment workflows, which
we will explain in more detail later. Fourth, through the contribution of
educational material.

One of the important features to recognize is that FG distinguishes itself from
current available systems. This includes traditional compute centers such as
XSEDE [xse12], but also well known IaaS offerings, such as Amazon [Amaa].

In contrast to Amazon, we provide alternatives to the IaaS framework, but
the biggest benefit stems from two unique features of FG. In FG we intend
to allow the mapping of specific resources as part of the service instantiation.
Thus, we can measure more realistically performance impacts of the middle-
ware and the services developed by the FG testbed user. Furthermore, we
allow authorized users a much greater level of access to resources by allowing
the creation of images that can not only be placed in a virtual machine (VM)
but also be run on the “bare” hardware.

A big distinction between XSEDE and FG is that FG provides a more
variable software stack and services. Traditionally, supercomputing centers
that are part of XSEDE focus on large scale high performance computing
applications while providing a well defined software stack. Access is based on
job management and traditional parallel and distributed computing concepts.
Virtual machine staging on XSEDE has not yet deemed to be a major part of
its mission. FG is more flexible in providing software stacks to be dynamically
adapt by the users.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 9

1.3.1 Architecture Overview

To support our requirements we have devised a flexible software architec-
ture enabling us to gradually introduce and expand components in support of
our mission. We distinguish the following components:

Fabric: The Fabric layer contains the hardware resources, including the FG
computational resources, storage servers, and network infrastructure in-
cluding the network impairment device.

Development and Support Fabric/Resources: Additional resources are
set aside that are helping us with the development and support of op-
erational services. This includes servers for portals, ticket systems, task
management systems, code repositories, a machine to host an LDAP
[KV04] server and other services. It is important to recognize that such
services should not be hosted on the “cluster” resources that constitute
the main FG Fabric as an outage of the cluster would affect important
operational services.

Operations Services: In order to effectively communicate and conduct de-
velopment effort, the following elementary services have been provided:
a website, a development wiki, a task management system to coordinate
the software development tasks and a ticket system. In addition, we need
to provide security and accounting services to deal with authentication,
authorization and auditing.

Base Software and Services: The FG Base services contain a number of
services we rely on when developing software in support of the FG mis-
sion. This includes Software that is very close to the FG Fabric and
includes tools like Moab [Com12], xCAT [wwwj], and also the base OS.
This category of services will enable us to build experiment management
systems utilizing dynamic provisioning.

Management Services: The management services are centered around FG
experiments and the overall system integration, including information
services and raining/dynamic provisioning (see Section 1.3.3) software
stacks and environments on the Fabric.

Access Services: FG user services contain variety of services. They include
IaaS, PaaS, SaaS, and classical Libraries that provide a service as an
infrastructure to the users such as accessing MPI [SOHL+98] and others
(see Section 1.3.2).

User Contributed Services (as part of additional Services): The ar-
chitecture image does not explicitly distinguish user contributed ser-
vices. It is important to note that user contributions take place on many
different access levels. This is supported by our architecture by allowing
the creation, distribution, reuse and instantiation of user contributed

10 Chapter in ’Contemporary HPC Architectures’

software as part of services or experiments within FG. Thus, we expect
that the FG User Contributed Services will grow over time while en-
hancing areas that we have not explicitly targeted ourselves. Instead,
we provide mechanisms for community users to integrate their contribu-
tions into FG offered services. The only difference to these services may
be the level of support offered in contrast to other FG services.

Together these components build our layers architecture view as depicted in
Figure 1.3.

Base Software and Services
OS, Queuing Systems, XCAT, MPI, ...

Access Services

Management Services FutureGrid Operations
Services

Development
Services
Wiki, Task

Management,
Document
Repository

User and
Support
Services

Portal,
Tickets,
Backup,
Storage,

PaaS

Hadoop,
Dryad,
Twister,
Virtual

Clusters,
...

Additional
Tools &
Services
Unicore,

Genesis II,
gLite, ...

Image
Management

FG Image
Repository,
FG Image
Creation

Experiment
Management

Registry,
Repository
Harness,
Pegasus
Exper.

Workflows, ...

Dynamic Provisioning
RAIN: Provisioning of IaaS,

PaaS, HPC, ...

Monitoring
and

Information
Service

Inca,
Grid

Benchmark
Challange,
Netlogger,

PerfSONAR
Nagios, ...

FutureGrid Fabric
Compute, Storage & Network Resources

Development &
Support Resources

Portal Server, ...

IaaS

Nimbus,
Eucalyptus,
OpenStack,

OpenNebula,
ViNe, ...

Security &
Accounting

Services
Authentication
Authorization
Accounting

HPC User
Tools &
Services
Queuing
System,

MPI, Vampir,
PAPI, ...

FIGURE 1.3: FutureGrid Software Architecture

1.3.2 Access Services

Next we will be focusing our attention towards the access services. As part
of the access services, we distinguish the following areas:

• PaaS (Platform as a Service): Delivery of a computing platform and
solution stack;

• IaaS (Infrastructure as a Service): Deliver a compute infrastructure as
a service;

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 11

• Grid: Deliver services to support the creation of virtual organizations
contributing resources;

• HPCC (High Performance Computing Cluster): Traditional high perfor-
mance computing cluster environment; and

• User and Support Services: Delivery of services to enable user support.

1.3.2.1 Access Service Demand

The question arises which services should we offer in FutureGrid? To an-
swer this question we have we identified user demand within the community
as part of our project application process within FutureGrid. At registration
time of a project, the project owner is presented with a number of choices
of technologies that are most useful for their project or they desire to have
access to. Project owners were able to choose multiple items. We obtained the
following result while analyzing the requests from project owners: (a) Nimbus:
(53.2%), (b) Eucalyptus: (50.8%), (c) Hadoop: (37.3%), (d) High Performance
Computing Environment: (35.7%), (e) MapReduce: (33.3%), (f) Common Ter-
aGrid Software Stack: (27%), (g) Genesis II: (16.7%), (h) Twister: (15.9%),
(i) OpenStack: (12.7%), (j) OpenNebula: (11.1%), (k) Unicore 6: (10.3%), (l)
gLite: (9.5%)

Please note that the the data is only collected for each project owner
and does not contain information gathered by members of projects or other
FutureGrid users. We observed over time only slight changes in the request
to these services. However, most recently we have seen significant increased
demand for OpenStack. As part of this monitoring activity, we intend to be
flexible in what we offer on FutureGrid and work with the community to strive
towards fulfilling services needs that fall within our project goals. We realize
that gathering this information may be biased as we gather the information
from our current set of users and therefore we are also monitoring the com-
munity actively (see Figure 1.4). This helps us attracting new users and adopt
our strategies towards community needs [vLDWF12].

1.3.2.2 Infrastructure as a Service

In contrast to the traditional offering of supercomputer centers, FutureGrid
provides a variety of Infrastructure as a Service (IaaS) frameworks on its
resources. IaaS allows to abstract the physical hardware and offer users instead
access to virtual machines that are than mapped onto the hardware. Currently,
one of the special features of FutureGrid is to provide not only one IaaS
framework, but several of them.

The reason why FG provides multiple IaaS frameworks is based on the fact
that any of the IaaS frameworks are under heavy development. Features are
added, and performance changes based on versions and deployment strategies.
Thus it is important to offer a variety of IaaS frameworks to a assist the users

12 Chapter in ’Contemporary HPC Architectures’

7-‐Oct-‐07	 7-‐Oct-‐08	 7-‐Oct-‐09	 7-‐Oct-‐10	 7-‐Oct-‐11	

Cloud	
Compu2ng	

OpenStack	

FIGURE 1.4: Google Trends shows popularity of OpenStack to be signifi-
cantly rising

evaluating and identifying the IaaS and deployment strategies best suited for
their applications. While on the surface client tools seem to offer similar capa-
bilities, the difference may be in how such frameworks are implemented and
how they perform and scale as part of an application integration. The cur-
rent IaaS frameworks that are offered on FutureGrid include Nimbus [wwwc],
OpenStack [wwwh] and Eucalyptus [wwwf]. Some of our own project also use
OpenNebula [wwwg] but we have not yet made it publicly available.

Nimbus. The Nimbus project [wwwc] consists of an IaaS (Nimbus Infrastur-
cuture) and a PaaS component (Nimbus Platform).

Nimbus Infrastructure provides both compute and storage cloud compati-
ble with Amazon Web Service’s Elastic Compute Cloud (EC2) [Amaa] and
Simple Storage Service (S3) [Amab], respectively. Nimbus targets features of
interest to the scientific community such as support for proxy credentials,
enhanced scheduling options, and fast deployment of large virtual clusters.
These features make it easy for scientific projects to experiment with Fu-
tureGrid Nimbus installations. Further, both Nimbus compute (Workspace
Service [KFF+05]) and storage (Cumulus [BFLK10]) cloud components are
provided as a high-quality, highly configurable and extensible open source im-
plementation which allows students and scientists to modify them in order
to experiment with new capabilities as has been done in [MKF11, RTM+10].
The FutureGrid Nimbus deployment contains of four independent clouds on
Hotel, Sierra, Foxtrot and Alamo, allowing research in the development of
heterogeneous cloud environments.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 13

Nimbus Patform [KF08, BFLK11] is an integrated set of tools that allow users
to provision resources across multiple infrastructure clouds, create virtual clus-
ters across those clouds, as well as scale to demand. Coordinated deployment
of complex resource configuration across multiple clouds is accomplished with
Nimbus cloudinit.d [BFLK11] which allows users to develop a launchplan for
such complex deployment once and then execute it many times. The Nim-
bus context broker [BFLK11] coordinates secure creation of “one click” vir-
tual clusters, potentially distributed over multiple clouds. These services allow
users to combine resources provisioned from Nimbus, OpenStack, and Ama-
zon Web Services clouds and are designed to be extended to support other
IaaS providers. We are in the process of developing multi-cloud autoscaling
services which will further facilitate access to FutureGrid cloud resources.

Eucalyptus. Eucalyptus [wwwf] is a popular IaaS framework that has been
commercialized since this project started. Our current deployment contains
two independent services on India and Sierra allowing research in the de-
velopment of heterogeneous cloud environments. Performance comparisons of
Eucalyptus 2 to Openstack and Eucalyptus 3 have shon that it is no longer
competitive. Hence we have recently updated from Eucalyptus 2 to Eucalyptus
3. The ability to conduct such performance experiments on the same resources
to gather this information is a significant strength of FutureGrid. Our results
were presented at the Eucalyptus users group meeting in 2012 and positively
received not only by the community but also by the Eucalyptus team as it
gave insight in how our user community uses the various IaaS frameworks and
can compare them with each other.

OpenStack. Most recently OpenStack [wwwh] has been introduced to the
community. It is driven by the community and has received a significant com-
munity backing not only by the academic, but also by the industrial commu-
nity. The quality of the code base is rapidly improving. By now OpenStack
has released a quite stable set of components that can be used to build sig-
nificantly large clouds. The recent OpenStack user’s community meeting was
attended by 1000 users. This in addition to the rising trend (see Figure 1.4)
proves that FutureGrid must support OpenStack on its resources.

ViNe: User Level Virtual Networks. ViNe [TF06] is a project developed
at University of Florida that implements routing and other communication
mechanisms needed to deploy a user-level virtual network. ViNe is partic-
ularly appealing for cloud computing because it allows the establishment of
wide-area virtual networks supporting symmetric communication among pub-
lic and private network resources (even when they are behind firewalls), does
not require changes to either the physical network or the OS of machines, and
has low virtualization overheads. ViNe can provide communication among Fu-
tureGrid and external resources (including those with private IP addresses)
without the need to reconfigure the (FutureGrid) physical network infrastruc-
ture.

In the first phase of FG, ViNe efforts focused on deploying and demonstrat-
ing overlay network capabilities. In the largest experiment, ViNe connected a

14 Chapter in ’Contemporary HPC Architectures’

virtual cluster (launched through Nimbus) across 3 FG (sierra, foxtrot, and
hotel) and 3 Grid’5000 (Rennes, Lille, and Sophia) sites [imp12b]. The virtual
cluster consisted of 750 VMs (1500 cores), and executed BLAST on Hadoop
(CloudBLAST) with speedup of up to 870X [MTF09].

In the second phase, ViNe efforts focused on adding management capabilities
to the existing code. The goal is to make it easy for FG users to configure and
operate ViNe software, without the needed overlay networks expertise.

In the third phase, building on the management capabilities implemented pre-
viously, high level management services (e.g., end-to-end QoS, overlay network
performance self-optimization, recovery in the presence of faults, etc) will be
developed.

1.3.2.3 Platform as a Service

In addition to the IaaS, FutureGrid offers also the ability to provide Platforms
as a Service to the users. Platforms typically include a well defined solution
stack such as a customizes operating system, a programming language exe-
cution environment, databases, as well as platforms related to data analysis,
such as map/reduce, Grid Computing, and even High Performance Comput-
ing (HPC). Once committed to a platform, users rely on the platform to be
deployed and develop their applications against such platforms. As each of
these platforms could be differently installed and managed it is sometimes
beneficial to be able to install them in a different fashion. Thus although we
have provided a number of default implementations, users are typically able to
assemble their own platforms to increase performance while targeting available
resources for specific application performance characteristics.

MapReduce. Within FutureGrid we provide a number of ways on how users
can access MapReduce [DG08]. First we allow users to use the Hadoop-based
Map/Reduce platform [wwwa] hosted on bare metal. However we also allow
users to stage their own personalized versions of Hadoop as to allow modifica-
tions and research to take place as part of improvements to the Hadoop code
base. In addition we also provide Hadoop as part of our dynamic provisioning
service in order to simplify performance experimentations.

Hadoop is a very popular PaaS that provides users with the map/reduce
framework. In addition to installing Hadoop on systems, FutureGrid has also
deployed myHadoop [KTB11], a set of scripts developed by SDSC that makes
it easy to submit Hadoop jobs through the FutureGrid batch queue systems.
It is also easy to customize and allows users to make their own copy and adjust
default Hadoop settings or to specify an alternate Hadoop implementation.
This is important, as some users may want to experiment with modified ver-
sions of Hadoop.

High Performance Computing Services. To emphasize high-level plat-
forms for High Performance computing and their special role, we have added
a separate category for them in our architecture as depicted in Figure 1.3. As
we are part of XSEDE some of our users have the need to test out software

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 15

that will later on be deployed in XSEDE. Hence providing regular HPC ser-
vices such as access to a queuing system and being able to run MPI programs
is possible. In addition to such bare metal services, we have also developed
examples on how such queuing systems can be set up via a single command-
line tool in a cloud environment on for example OpenStack. This is important
for future activities where users may experiment with queueing strategies and
federated data centers while simulating an XSEDE like infrastructure in the
Cloud.

Grid Services. FutureGrid also offers a number of Grid services including
access to Unicore, and Genesis II. Not surprisingly the demand for Globus was
relatively low, as they have been available for some time on XSEDE and the
users of such services seem to utilize the far larger XSEDE resources. Most
of the demand for Globus stems form the workflow community that tries to
also integrate FutureGrid into their workflows while relying on Grid services,
as well as the interoperability research community that investigates tools to
increase interoperability within Grid environments.

More interestingly for our community is the Globus Provision tool [glo12] for
deploying fully configured Globus environments within Cloud environments.
It is designed to be simple to use, and will allow you to deploy common Globus
services, such as GridFTP and GRAM, in just minutes. Globus Provision will
also take care of generating user accounts, certificates, and setting up auxiliary
services. Globus Provision can deploy these services in any combination you
need. For example, you could deploy a single GridFTP server, a Condor pool
[con] with ten worker nodes and a GRAM server, or 30 GridFTP servers to
teach a tutorial where each student needs their own GridFTP server to play
around with. Once these services are deployed, you can dynamically add and
remove software, hosts, and user accounts. We have made the current version
of Globus provisioning available on FutureGrid, but have not yet received
much feedback about its functionality and usage.

Symmetric Multiprocessing. Symmetric Multiprocessing (SMP) has been
a fundamental driver in HPC, furthering the availability of parallel processing
architectures to commodity multi-core technology. While this multi-core age
has continued Moore’s Law, the growth rate of cores has been lackluster at
best. Cache coherent Non-Uniform Memory Access (ccNUMA) architectures,
specifically based on the newest x86 processors, have the ability to turn a
commodity cluster into a single, large-scale supercomputer. These ccNUMA
machines provide large-scale multiprocessing and relative ease of use for data
and compute intensive scientific applications, but the costs associated with
such supercomputers make them prohibitively expensive for the vast majority
of potential users.

Recently, virtualization has allowed for the ability to abstract hardware in or-
der to create a virtualized SMP machine using commodity hardware. One such
implementation, vSMP by ScaleMP Inc, provides such an experience [sca12].
However, as it is a virtualized access to SMP it is important to measure perfor-
mance impact on applications. A deployment within FutureGrid allows such

16 Chapter in ’Contemporary HPC Architectures’

analysis. Experiments conducted on futureGrid using HPCC benchmarks show
only a 4-6% drop in efficiency when compared to native cluster performance.
PAPI and Vampir To support the development of performance based ex-
perimentation on FutureGrid we have deployed a number of tools for the user.
This includes Vampir [vam12] and PAPI.
PAPI is an acronym for Performance Application Programming Interface
[pap12]. The PAPI Project is being developed at the University of Tennessee’s
Innovative Computing Laboratory in their Computer Science Department.
This project was created to design, standardize, and implement a portable
and efficient API (Application Programming Interface) to access the hard-
ware performance counters found on most modern microprocessors. PAPI is
at this time enhanced to be able to work also in virtual machines.
Vampir provides a manageable framework for analysis, which enables devel-
opers to quickly display program behavior at any level of detail. Detailed
performance data obtained from a parallel program execution can be ana-
lyzed with a collection of different performance views. Intuitive navigation
and zooming are the key features of the tool, which help to quickly identify
inefficient or faulty parts of a program code. Vampir implements optimized
event analysis algorithms and customizable displays which enable a fast and
interactive rendering of very complex performance monitoring data.

1.3.3 Management Services

1.3.3.1 Dynamic Image Provisioning with RAIN

Cloud computing has become an important driver for delivering infrastructure
as a service (IaaS) to users with on-demand requests for customized environ-
ments and sophisticated software stacks. As we support a number of different
IaaS frameworks we have to consider the following issues:

1. Resources need to be managed within each IaaS

2. Resources have to be assigned to each IaaS

3. Sharing of resources and reallocating them is an integral part of Future-
Grids services.

Within the FutureGrid project, we are devising a framework that allows this
level of customization for administrators and users. The FutureGrid archi-
tecture, depicted in Figure 1.3, shows the two components, namely Image
Management and Dynamic Provisioning, that are tightly interwoven to allow
users to dynamically provision images on bare-metal and virtualized infras-
tructures.
Image management is a key component in any modern compute infrastruc-
ture, regardless if used for virtualized or non-virtualized resources. We distin-
guish a number of important processes that are integral part of the life-cycle
management of images. They include (a) image creation and customization,

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 17

(b) sharing the images via a repository, (c) registering the image into the
infrastructure, and (d) image instantiation (see Figure 1.5). The problem of
targeting not one, but multiple infrastructures amplifies the need for tools
supporting these processes. Without them, only the most experienced users
will be able to manage them under great investment of time.

Our design targets an end-to-end workflow to support users in creating ab-
stract image management across different infrastructures easily [DvLWF12,
DYvL+11]. This includes images for Eucalyptus, Nimbus, OpenStack, Open-
Nebula, Amazon, and bare-metal. To summarize the idea behind our design,
we prefer users to be able to specify a list of requirements such as an OS,
an architecture, software, and libraries in order to generate a personalized
abstract image. This image is generic enough that through manipulations it
can be adapted for several IaaS or HPC infrastructures with little effort by
the users. It will support the management of images for Nimbus [wwwc], Eu-
calyptus [wwwf], OpenStack [wwwh], and bare-metal HPC infrastructures as
they are either already deployed in FG or going to be deployed as in the case
of OpenNebula [wwwg].

By supporting this image management workflow, our framework eases the
use of IaaS and HPC frameworks and infrastructures for performance experi-
ments based on abstract image management and uniform image registration.
Consequently, users can build their own customized environments very eas-
ily. The complex processes of the underlying infrastructures are managed by
our sophisticated software tools and services. Besides being able to manage
images for IaaS frameworks, we also allow the registration and deployment
of images onto bare-metal by the user. This level of functionality is typi-
cally not offered in a HPC infrastructure. However, our approach provides
users with the ability to create their own environments changing the paradigm
of administrator-controlled dynamic provisioning to user-controlled dynamic
provisioning. Thus, users obtain access to a testbed with the ability to man-
age state-of-the-art software stacks that would otherwise not be supported in
typical compute centers. Security is also considered by vetting images before
they are registered in an infrastructure.

The capabilities provided by our image management framework are advan-
tageous to support repeatable performance experiments across a variety of
infrastructures. To support a modular design we have devised a component
for each process. This includes an image generation component to create im-
ages following user requirements, an image repository component to store,
catalog and share images, and an image registration component for prepar-
ing, uploading and registering images into specific infrastructures such as HPC
or different clouds.

As we can see in Figure 1.5, the architecture includes a convenient separation
between client and server components for allowing users to easily interact
with the hosted services that manage our processes. Our design allows users
to access to the various processes via a python API, a REST service [Fie00],
a convenient command line shell, as well as a portal interface. The image

18 Chapter in ’Contemporary HPC Architectures’

management server has the task to generate, store, and register the images
with the infrastructure. The image management server also interfaces with
external services, such as configuration management services to simplify the
configuration steps, authentication and authorization, and a service to verify
the validity of an image including security checks.

One important feature in our design is how we are not simply storing an
image but rather focusing on the way an image is created through abstract
templating. Thus, it is possible at any time to regenerate an image based on
the template describing the software stack and services for a given image.
This enables us also to optimize the storage needs for users to manage many
images. Instead of storing each image individually, we could just store the
template or a pedigree of templates used to generate the images.

To aid storage reduction, our design includes data to assist in measuring us-
age and performance. This data can be used to purge rarely used images,
while they can be recreated on-demand by leveraging the use of templating.
Moreover, the use of abstract image templating will allow us to automat-
ically generate images for a variety of hypervisors and hardware platforms
on-demand. Autonomous services could be added to reduce the time needed
to create images or deploy them in advance. Reusing images among groups
of users and the introduction of a cache as part of the image generation will
reduce the memory footprint or avoid the generation all together if an image
with the same properties is already available.

Image Generation. The image generation provides the first step in our
image management process allowing users to create images according to their
specifications. As already mentioned, the benefit of our image generation tools
and services is that we are not just targeting a single infrastructure type but
a range of them.

The process is depicted in Figure 1.6. Users initiate the process by specify-
ing their requirements. These requirements can include the selection of the
OS type, version, architecture, software, services, and more. First, the image
generation tool searches into the image repository to identify a base image to
be cloned, and if there is no good candidate, the base image is created from
scratch. Once we have a base image, the image generation tool installs the
software required by the user. This software must be in the official OS reposi-
tories or in the FG software repository. The later contains software developed
by the FG team or other approved software. The installation procedure can
be aided by Chef [CHEa], a configuration management tool to ensure the
software is installed and configured properly. After updating the image, it is
stored in the image repository and becomes available for registration into one
of the supported infrastructures. Our tool is general to deal with installation
particularities of different operating systems and architectures.

One feature of our design is to either create images from scratch or by cloning
already created base images we locate in our repository.

In case we create an image from scratch, a single user identifies all specifi-
cations and requirements. This image is created using the tools to bootstrap

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 19

images provided by the different OSes, such as yum for CentOS and deboos-
trap for Ubuntu. To deal with different OSes and architectures, we use cloud
technologies. Consequently, an image is created with all user specified pack-
ages inside a VM instantiated on-demand. Therefore, multiple users can create
multiple images for different operating systems concurrently; obviously, this
approach provides us with great flexibility, architecture independence, and
high scalability.

We can speed-up the process of generating an image by not starting from
scratch but by using an image already stored in the repository. We have tagged
such candidate images in the repository as base images. Consequently, modi-
fications include installation or update of the packages that the user requires.
Our design can utilize either VMs or a physical machine to chroot into the
image to conduct this step.

Advanced features of our design include the automatic upgrade or update of
images stored in the repository. The old image can be deleted after the user
verifies the validity of the new image.

Image Repository. The image repository [DvLW+11] catalogs and stores
images in a unified repository. It offers a common interface for distinguishing
image types for different IaaS frameworks but also bare-metal images. This
allows us to include a diverse set of images contributed not only by the FG
development team but also by the user community that generates such images
and wishes to share them. The images are augmented with information about
the software stack installed on them including versions, libraries, and available
services. This information is maintained in the catalog and can be searched
by users and/or other FG services. Users looking for a specific image can
discover available images fitting their needs using the catalog interface. In
addition, users can also upload customized images, share them among other
users, and dynamically provision them. Through these mechanisms we expect
our image repository to grow through community contributed images.

Metadata included in the repository includes information about properties of
the images, the access permission by users and the usage. Access permissions
allow the image owner to determine who can access this image from the repos-
itory. The simplest types of sharing include private to owner, shared with the
public or shared with a set of people defined by a group/project. Usage infor-
mation is available as part of the metadata to allow information about usage
to be recorded. This includes how many times an image was accessed and by
whom.

Image Registration. Once the image has been created and stored into the
repository, we need to register it into the targeted infrastructure before we
can instantiate it. Users requirements are simply the image, the targeted in-
frastructure and the kernel. The kernel is an optional requirement that allows
advance users to select the most appropriate kernel for their experiments. This
tool provides a list of available kernels organized by infrastructure. Neverthe-
less, users may request support for other kernels like one customized by them.
Registering an image also includes the process of adapting it for the infrastruc-

20 Chapter in ’Contemporary HPC Architectures’

Image
Management

Client

IaaS and Bare-Metal HPC
Infrastructures

HPC Clusters

Image
Management

Server

API

Cloud IaaS
Frameworks

Bare Metal

Image
Repository

Image
Generation

External Services:
Chef, Security tools

Image
Registration

FG Shell

Portal

Image
Instantiation

Nimbus
Eucalyptus

AWS
OpenNebula
OpenStack

FIGURE 1.5: Architecture of Rain to conduct image provisioning on IaaS
and bare-metal

ture. Often we find differences between them requiring us to provide further
customizations, security check, the upload of the image to the infrastructure
repository, and registering it. These customizations include the configuration
of network IP, DNS, file system table, and kernel modules. Additional config-
uration is performed depending on the targeted deployed infrastructure.
In the HPC infrastructure the images are converted to network bootable im-
ages to be provisioned on bare-metal machines. Here, the customization pro-
cess configures the image, so it can be integrated into the pool of deployable
images accessible by the scheduler. In our case this is Moab. Hence, if such
an image is specified as part of the job description the scheduler will conduct
the provisioning of the image for us. These images are stateless and the sys-
tem is restored by reverting to a default OS once the running job requiring a
customized image is completed.
Images targeted for cloud infrastructures need to be converted into VM disks.
These images also need some additional configuration to enable VM’s con-
textualization in the selected cloud. Our plan is to support the main IaaS
clouds, namely Eucalyptus, Nimbus, OpenStack, OpenNebula, and Amazon
Web Service (AWS). As our tool is extensible, we can also support other cloud
frameworks.
Of importance is a security check for images to be registered in the infrastruc-
tures. A separate process identifies approved images, which are allowed to be
instantiated in FutureGrid. Approval can be achieved either by review or the
invocation of tools minimizing and identifying security risks at runtime. Users
may need to modify an image to install additional software not available dur-

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 21

ing the image generation process or to configure additional services. Modified
images need to go through some additional tests before they can be registered
in the infrastructure. To perform these security tests, we plan to create a high
level platform for instantiating the images in a controlled environment such
as a VM with limited network access. Hence, we can perform some tests to
verify the integrity of the image, detect vulnerabilities and possible malicious
software

If the image passes all the tests, it is tagged as approved. To provide au-
thentication and authorization images may interface with the FG account
management. The process of registering an image only needs to be done once
per infrastructure. Therefore, after registering an image in a particular infras-
tructure, it can be used anytime to instantiate as many VMs or in case of
HPC as many physical machines as available to meet the users requirements.

Customize Image for:

OpenStack

Eucalyptus

Nimbus

OpenNebula

Amazon

Command Line Tools

Retrieve from
Image RepositoryUser's Image

Register Image in the
Infrastructure

HPC

Image Customized for the selected
Infrastructure

Image is Ready
for Instantiation in
the Infrastructure

Upload Image to the Infrastructure

Security Check

Requirements: Image,
Kernel, Infrastructure

FIGURE 1.6: Image Registration

Dynamic Provisioning with RAIN Due to the variety of services and
limited resources accessible in FG, it is necessary to enable a mechanism to
provision needed services onto available resources and suspend or shutdown
services that are not utilized. This includes the assignment of resources to
different IaaS and PaaS frameworks. We we need to develop a convenient
abstraction that allows us to hide the many underlying tools and services to
accomplish this task. We observed the following needs from the FutureGrid
user community:

1. In contrast to Grid frameworks such as Globus, we are not only inter-
ested in interfacing to the job management system or file transfer.

22 Chapter in ’Contemporary HPC Architectures’

2. In contrast to IaaS environments, we are not just interested in provision-
ing an image as part of the virtualized environment. Instead, we would
like to be able to “provision” the entire IaaS framework.

3. In contrast to environments based on a single operating system, we
would like to manage the deployment on multiple base OS including the
choice of which virtualization technology is used.

4. In contrast to just focusing on virtualized environments, we would also
like to enable an environment allowing performance comparisons be-
tween the virtualized and the non-virtualized versions of applications,
e.g. comparing HPC, vs. IaaS frameworks. Hence, it is important to rec-
ognize that this comprehensive view of “raining” an environment is a
significant contribution of FG and allows comparative studies that are
otherwise not easily possible.

We have developed, as first step to address this challenge, a sophisticated im-
age management toolkit that allows us to not only provision virtual machines,
but also provision directly onto bare-metal [DvLWF12]. Thus, we use the term
raining to indicate that we can place arbitrary software stack onto a resource.
The toolkit to do so is called rain.
Rain will make it possible to compare the benefits of IaaS, PaaS performance
issues, as well as evaluating which applications can benefit from such environ-
ments and how they must be efficiently configured. As part of this process,
we allow the generation of abstract images and universal image registration
with the various infrastructures including Nimbus, Eucalyptus, OpenNebula,
OpenStack, but also bare-metal via the HPC services. It is one of the unique
features about FutureGrid to provide an essential component to make compar-
isons between the different infrastructures more easily possible [vLDWF12].
Our toolkit rain is tasked with simplifying the creation and deployment of
customized environments.
Internally rain may use a multitude of tools and components suitable to con-
duct the task indicated by the command line tool. This may include Moab,
xCAT, TakTuk [tak12], and even IaaS frameworks where appropriate. It is
important to recognize that, in order to allow repeatable experiments, the
rain command will have to interact with a multitude of services. In future,
rain will allow specifically the recording of the resources participating in the
experiment. Eventually, the experiment can be shared with other users and
replicated.
As a result, rain is a pivotal process in making the FG deployment unique
and applicable to any set of scientific researchers requiring rapid deployment
IaaS, PaaS, and HPC environments (see Figure 1.7). Thus, rain will offer the
following main features:

• Create customized environments on demand.

• Compare different infrastructures.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 23

• Move resources from one infrastructure to another by changing the image
they are running plus doing needed changes in the framework.

• Ease the system administrator burden for creating deployable images.

• Access to repeatable experiments.

Examples for “raining” are the deployment of an Hadoop cluster to run an
experiment, the instantiation of a set of VMs with an specific OS, or the
deployment of a virtual cluster based on SLURM [?, wwwi]. We envision that
commands such as

fg-rain --hadoop -x india -m 10 -j jobscript.sh

fg-rain -os ubuntu11.04 -s sierra -m 25 -I

fg-rain --cluster slurm -x sierra -m 34

will be transparent enough for users to achieve provisioning on both bare metal
and virtualized infrastructures (cloud). It is obvious that such a command will
be extremely powerful and provide an important mechanism for abstracting
the many different tools and services that are needed to accomplish the task.
In this way, users don’t need to be aware of the underlining details of each
infrastructure. Hence, the command rain will provide the high level interface
to the FG fabric, which is essential to create deployment workflows in a simple
fashion.

1.3.3.2 Monitoring, Information, and Performance Services

A critical component of FutureGrid is the ability to monitor the expected
behavior of its systems and services. This is especially important due to the
experimental nature of the FutureGrid mission. Monitoring activities in Fu-
tureGrid include testing the functionality and performance of FutureGrid ser-
vices using Inca, collecting usage data with Netlogger, cluster monitoring with
Ganglia, and network monitoring with perfSONAR and SNAPP. Administra-
tors and users can then easily access the monitoring data generated by each
tool through the user portal. Programmatic access to the monitoring data is
also available through each of the tools and work is ongoing to integrate the
monitoring data into a common messaging system using AMQP for easier ac-
cess. Each monitoring tool is described further in the subsections below. We
also provide performance tools, PAPI and Vampir, into the image generation
process for both virtual and bare-metal images.
Inca. Inca [SEHO07] is a monitoring framework designed to detect cyber-
infrastructure problems by executing periodic, automated, user-level mon-
itoring of CI software and services. Inca currently executes over 200 tests
for FutureGrid’s Cloud, Grid, HPC, and internal services: Eucalyptus, Gan-
glia, GCC, Genesis II, Globus GRAM, Globus GridFTP, HostCert/CRL,
HPCC, IMPI, Inca, Infiniband (Sierra), JIRA, LDAP, Modules, MongoDB,
myHadoop, Openstack, NetLogger, Nimbus, OpenMPI, PAPI, perfSONAR,

24 Chapter in ’Contemporary HPC Architectures’

M
ap/R

educe
Fram

ew
orks

C
loud

Fram
ew
orks

Nimbus

XCAT

Dynamic Prov.

FG Perf. Monitor

Eucalyptus

Hadoop Dryad
Parallel

Program
m
ing

Fram
ew
orks

MPI OpenMP

G
rid

Globus Unicore

many many more

Moab

FIGURE 1.7: The concept of raining allows to dynamically provision images
on bare-metal, but also in virtualized environments. This allows performance
experiments between virtualized and non virtualized infrastructures.

PGCC, the FG Portal, SSH, Torque/Moab, Unicore, VampirTrace, Wiki, and
XCAT. It also collects performance measurements for each of the Cloud tools
and HPCC performance data from the HPC partitions.

Netlogger. Netlogger [TJC+98] is a tool for debugging and analyzing the
performance of complex distributed applications. It is currently being lever-
aged to collect privileged usage data (number of deploy VMs and number of
unique users) using small probes that execute with administrator credentials
every hour for each of the Cloud tools: Eucalyptus, Nimbus, and Openstack.

Ganglia. Ganglia [MCC04] is a cluster monitoring tool used to monitor each
of the FutureGrid clusters. It collects CPU, memory, disk, and network usage
statistics for each cluster node. The monitoring data is then aggregated and
published at a centralized Ganglia server.

perfSONAR. perfSONAR [HBB+05] is an infrastructure for network perfor-
mance monitoring. FutureGrid has deployed the perfSONAR-BUOY infras-

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 25

tructure to perform a full mesh of BWCTL measurements (regularly-scheduled
Iperf measurements). Currently, we have a basic setup of sixty second 1G TCP
measurements that are run every two hours.

SNAPP SNAPP [SNA07] is a network statistical data collection and visual-
ization tool that is used to collect high-performance, high-resolution SNMP
data from the FutureGrid network.

1.3.4 Experiment and Project Management

Users obtain access to FutureGrid by submitting projects describing the na-
ture and merit of their activity. Currently most projects tax FutureGrid not in
number of resources requested but in the nature and support of requested soft-
ware and these issues are used in evaluation. We do not approve projects such
as production science that are more suitable for other XSEDE sites. There
are currently no restrictions on nationality or type (academic, government,
industry) of users. We require however that the use of FutureGrid be doc-
umented and results be shared with the community. The FutureGrid portal
https://portal.futuregrid.org/ [wwwb] has an open list of all projects, their
results, papers on its development and reports on its progress.

FutureGrid allows both federated and non federated experiments. Due to the
variety of technologies that are supported not all of them integrate yet well into
a completely federated environment. We base our federated infrastructure on
LDAP where possible, while using public keys. Surprisingly, it was relatively
easy so far to provide an IdP (Identity Provider) based on a simple verification
process that included a google search on academic publications, participation
in source code development of established projects, or lookup on university
Web sites. We also identified that we have users that are and probably never
will be part of the US campus bridging IdP based on InCommon. An OpenID
can be used to be associated with the portal account, effectively providing
SSO with services such as Googledocs. This is especially of importance as we
believe that in order to support the long tail of science we need to interface
with such tools as they provide via google scholar, and collaborative document
preparation popular in the education community.

Experiments are currently done as part of projects that are vetted and ap-
proved. Once a project is approved users can conduct experiments. A result
of such experiments can be a template that can be used to reproduce such
an experiment or even an image that others can use by reusing the software
stack promoted by this image.

We are in the process of developing a number of tools that together pro-
vide a sophisticated experiment management environment while leveraging
lessons learned from our earlier experiences [vLYH+09, vL06]. This is done
as part of a targeted software architecture that we make public as part of
our activities. This architecture reuses a number of tools including Nim-
bus, OpenStack, OpenNebula, Eucalyptus, Globus, Unicore, Genesis II, Pe-
gasus [CD11, VDRB11]. For dynamic provisioning on bare metal and VMs

26 Chapter in ’Contemporary HPC Architectures’

we are using the term rain and developed the fg-rain prototype that not
only places the OS on the resources (virtualized and non-virtualized) but
also assembles the OS and the software stack as part of an image generation
process[vLFW+10, DvLW+11, DvLWF12].

1.3.4.1 Interactive Experiment Management

The design philosophy of this set of tools is a Unix-style one where a user can
use a set of independent tools together (via the command line or a script) to
accomplish a complex goal.

Interactive experiment management is currently an ongoing research activity
within FutureGrid. Various approaches to this exist within FutureGrid. One
of these approaches is to create an experiment harness with existing and new
tools such as TakTuk and the FutureGrid Host List Manager. These tools are
used in conjunction with other tools such as Torque and Nimbus provision-
ing commands and even the Unix script command. TakTuk is a cluster fork
or parallel shell type tool developed as part of the Grid 5000 project. The
TakTuk user interface is a command line program that allows a user to easily
and efficiently execute commands on sets of remote computer systems and
transmit the output of these commands back to the TakTuk program. TACC
developed the Host List Manager - a set of command line programs that dis-
covers what FutureGrid resources have been provisioned to a user (via Torque
and Nimbus), organizes resources into groups (based on the tag(s) that the
user assigns to each resource), and generates host list files for use by TakTuk
or similar parallel shell tools.

A FutureGrid user can therefore use Torque and Nimbus commands to pro-
vision resources, use the Host List Manager to organize those resources into
groups, execute commands on the resources via TakTuk, and record their
entire session via the Unix script program.

TakTuk and the Host List Manager have been deployed on the Alamo, Hotel,
India, and Sierra FutureGrid clusters and are available in production to Fu-
tureGrid users. The deployment includes the software itself and modules for
including the software into a user’s environment.

1.3.4.2 Workflow-Based Experiment Management

Scientific workflows have been popular within the Grid community to coordi-
nate the execution of large scale workflows utilizing resources from a variety of
Grids. It is obvious that part of this strategy can be reused within the Cloud
environment. This strategy is followed by the Pegasus project that provides
to FutureGrid the promise to allow workflow based experiment Management
to the FutureGrid community.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 27

1.3.4.3 DevOps-Based Experiment Management

In addition to the experiment management strategies listed above, we also
support experiment management with tools that recently have become syn-
onymous with DevOps. Here templates, scripts, or recipies are used to formu-
late in a templated fashion deployment descriptions to coordinate the creation
of an experiment environment that includes resources as part of the compute
fabric, the operating system and/or virtuualization environments, and the in-
stantiation of high-level platforms as part of the overall deployed experimental
services. Such a mechanism is possible while leverageing tools such as Puppet
or chef as well as integrating them as part of our RAIN toolkit. The goal
is to create small test deployments that with little effort can be rained onto
larger resource fabrics when desired. It also allows the total reconfiguration of
the environment while proposing the model of “nothing installed on the ma-
chine”. Hence such an experiment management framework could also be used
to bootstrap the previous two Management frameworks that are positioned at
a higher level and require certain software to be readily be available.

1.3.4.4 Rain-Based Experiment Management

As one of the key components and services of FutureGrid is to dynamically
provision operating systems, IaaS, and PaaS frameworks onto different re-
sources, as well as the dynamic allocation based on user demand, it will be
possible to create and recreate environments and experiment resources based
on predifined specifications. This will help in setting up suitable experiment
frameworks that allow comparision of features across infrastructures, plat-
forms, operating systems, and other high level tools. Hence it builds an ele-
mentary basic unit that can be used in workflow-based, interactive, as well
as DevOps-based experiments. Without doubt one of the most sophisticated
services planed and offered in FutureGrid. To facilitate ease of use we take the
ideas presented in [vLYH+09] and expose the funtionlity throug a convenient
comand shell while also working towards integraton into a portal.

1.3.5 Operations Services

Authentication and Authorization. We have devised our authentication
strategy on LDAP and enabled the management of users through the portal.
Our account policy is based on that all users must (a) have a portal account,
(b) be in an approved project, and (c) have an ssh key uploaded Accounts for
Eucalyptus must currently be separately applied for as the version of Euca-
lyptus we have access to is not yet integrated with LDAP. The LDAP servers
are distributed and also Nimbus is already integrated with our LDAP server.

LDAP provided an excellent mechanism for our security needs. All clouds
Nimbus, Eucalyptus, OpenStack, OpenNebula we consider for deployment are
currently or will support LDAP. We consulted with security experts that gave
the recommendation to use LDAP. Originally we wanted to interface also with

28 Chapter in ’Contemporary HPC Architectures’

InCommon, for account vetting, but found that vetting accounts so far was
not that much work and that the attributes provided by InCommon does at
this time not allow us to eliminate our account vetting activities as confirmed
by experts from the InCommon community.

Cloud Accounting. An important part for FG is to be able to present
accounting information for our deployed cloud environments. This has been
surprisingly more challenging as we originally anticipated. First, the cloud
frameworks support for accounting is minimal or non-existing. In addition,
we are also investigating mechanisms to not only parse and monitor Eucalyp-
tus logs, but also to identify that we can integrate that information into a
system such as Gold. However, the developers of Gold have recently discon-
tinued support for it and recommend instead a commercial solution. We will
reevaluate our strategy as it was based on Gold.

HPC Accounting. Accounting on HPC systems is important to identify how
the systems were used and utilized. Although integration with the XSEDE
central repository would be possible, we identified together with University
of Buffalo several challenges. First, the metrics we are interested in such as
VM monitoring and utilization are not in the database and require a signifi-
cant modification. Second due to the reconfigurable nature of FutureGrid the
number of nodes associated to the HPC services is not static and does not
fit the current analysis and recoding model. Third, the type of jobs we ran is
not as typical and CPU bound. For example we find many users testing sci-
entific workflows instead of conducting large scale number crunching on our
resources.

Intelligent Resource Adaptations. Once we have accounting information
we will start an effort on utilizing the accounting information to integrate it
into a dynamic provisioning mechanism as part of RAIN. E.g. if we detect
that users do not want to use HPC resources or Eucalyptus resources, the
machines hosting the compute nodes for these services can be assigned to for
example Nimbus if Nimbus reports to us hat more resources are needed. This
will lead to a metascheduler for cloud and HPC resources.

1.3.6 Development Services

Due to the size of the project it is important to provide a good infrastructure
in support of our collaborative efforts. This includes the deployment of a task
management system, a wiki, and a continuous integration environment.

1.3.7 Portal

FutureGrid presents a sophisticated portal based on Drupal that integrates
not only with sever of our services, but also provides the ability to foster a
community. Of especial importance is the integration of several workflows that
make the review and the approval process of projects very simple.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 29

1.4 Service Deployment

In Table 1.3 we list elementary services that have been deployed on which
resources in FG.

TABLE 1.3: Deployed services

India Sierra Hotel Foxtrot Alamo Xray Bravo Echo

myHadoop (d) (d) (d)
Nimbus (d) (d) (d) (d)

Eucalyptus (d) (d)

ViNe (i) (d) (i) (d) (i)
Genesis II (d) (d) (d) (d)
Unicore (d) (d) (d)

MPI (d) (d) (d) (d) (d) (d) (d)
OpenMP (d)
ScaleMP (d)
Ganglia (d) (d)

Pegasus (i) (i) (i) (i) (i)
Inca (d) (d) (d) (d) (d) (d)
Portal (i) (i) (i) (i) (i) (i)

PAPI (d)
Vampir (d) (a)
Vampir Trace (d) (d)

RAIN (d)

Legend:
(d) deployed (a) can be made available upon request (i) information available in the portal

1.5 Applications using FutureGrid

More than 220 projects and 920 users are registered in FutureGrid. These
projects cover a wide range from application to technology and from research
to education. Recent projects have focused on integration testing for XSEDE,
image management and dynamic provisioning on bare metal [DvLWF12], scal-
ability test for cloud provisioning [vLDWF12]. These projects are ground
braking as they introduce a testbed environment for XSEDE an also allow
user facing dynamic provisioning, something that is not normally offered by
other resources. The scalability experiment showed certain limitations with
standard cloud setups for use cases typical for scientific applications.
Additionally, we list in Table 1.4 a number of projects that have undertaken
on FutureGrid to provide an overview of the wide variety of projects. Each

30 Chapter in ’Contemporary HPC Architectures’

project must report their success and findings on the FutureGrid Web site
[wwwb]. Currently, our portal is quite streamlined for the entire workflow
related to user account creation, project creation, and reporting. In addition
application user forums can be established for the projects if the project lead
wishes. This makes it possible to have projects created in just a very short
time period. In the next sections we will present some selected projects. To
see all of the projects conducted on FutureGrid we recommend to visit the
FutureGrid portal.

1.5.1 Privacy preserving gene read mapping using hybrid
cloud

An example project investigationg security aspects of hybrid clouds is found
at [Cheb]. In this project the researchers study the possibility of doing reads
mapping using hybrid cloud, in order to utilize public computing resources
while preserving the data privacy. The topic of this research is very timely in
order to address requirements about privacy in bioinformatics as more and
data are generated. The tem conducting this research also intends to increase
the data processing speed in the area of bioinformatics andreplace current
read mapping tools. A typical experiment on FutureGrid will run for about
two to three days.

One of the most important analyses on human DNA sequences is read map-
ping, which aligns a large number of short DNA sequences (called reads)
produced by sequencers to a reference human genome. The analysis involves
intensive computation (calculating edit distances over millions upon billions
of sequences) and therefore needs to be outsourced to low-cost commercial
clouds. This asks for scalable privacy-preserving techniques to protect the
sensitive information sequencing reads contain. Such a demand cannot be
met by the existing techniques, which are either too heavyweight to sustain
data-intensive computations or vulnerable to re-identification attacks. Our re-
search, however, shows that simple solutions can be found by leveraging the
special features of the mapping task, which only cares about small edit dis-
tances, and those of the cloud platform, which is designed to perform a large
amount of simple, parallelizable computation. We implemented and evaluated
such new techniques on a hybrid cloud platforms built on FutureGrid. In our
experiments, we utilized specially-designed techniques based on the classic
“seed-and-extend” method to achieve secure and scalable read mapping. The
high-level design of our techniques is illustrated in Figure 1.8.

Here, the public cloud on FutureGrid is delegated the computation over en-
crypted read datasets, while the private cloud directly works on the data. Our
idea is to let the private cloud undertake a small amount of the workload to
reduce the complexity of the computation that needs to

The researchers reported that their solution method is performed on the en-
crypted data, while still having the public cloud shoulder the major portion
of a mapping task. They constructed a hybrid environment over FutureGrid

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 31

TABLE 1.4: Selected FutureGrid Projects

Project Institution Details

Educational Projects
System Programming and
Cloud Computing

Fresno State Teaches system programming and
cloud computing in different
computing environments

REU: Cloud Computing University of
Arkansas

Offers hands-on experience with
FutureGrid tools and technologies

Workshop: A Cloud View
on Computing

Indiana
University

Boot camp on MapReduce for
faculty and graduate students from
underserved ADMI institutions

Topics on Systems:
Distributed Systems

Indiana
University

Covers core computer science
distributed system curricula (for 60
students)

Interoperability Projects
SAGA Rutgers Explores use of FutureGrid

components for extensive
portability and interoperability
testing of Simple API for Grid and
scale-up and scale-out experiments

Applications
Metagenomics Clustering North Texas Analyzes metagenomic data from

samples collected from patients

Genome Assembly Indiana School of
Informatics

De novo assembly of genomes and
metagenomes from next generation
sequencing data

Physics: Higgs boson Virginia Matrix Element calculations
representing production and decay
mechanisms for Higgs and
background processes

Business Intelligence on
MapReduce

Cal State LA L.A. Market basket and customer
analysis designed to execute
MapReduce on Hadoop platform

Computer Science Data
Transfer Throughput

Buffalo End-to-end optimization of data
transfer throughput over wide-area,
high-speed networks

Elastic Computing Colorado Tools and technologies to create
elastic computing environments
using IaaS clouds that adjust to
changes in demand automatically
and transparently

The VIEW Project Wayne State Investigates Nimbus and
Eucalyptus as cloud platforms for
elastic workflow scheduling and
resource provisioning

Technology Project
ScaleMP for Gene
Assembly

Indiana
University

Pervasive Technology Institute
(PTI) and Biology Investigates
distributed shared memory over 16
nodes for SOAPdenovo assembly of
Daphnia genomes

XSEDE Virginia Uses FutureGrid resources as a
testbed for XSEDE software
development

Cross Campus Grid Virginia Work on bridging infrastructure
across different university campus

32 Chapter in ’Contemporary HPC Architectures’

Encrypted Query
Seeds

Seeding Results

Extending
Private Cloud Public Cloud

Seeding

Sorted Query
Seeds

Pre-sorted
Reference

FIGURE 1.8: Using a public and private cloud for gener read mapping

while using the following two modes: First, a virtual mode in which 20 nodes
of FutureGrid wer used as the public cloud and 1 node was configured as pri-
vate cloud. Second, a real mode, in which nodes on FutureGrid were used as
the public cloud and the computing system within the School of Informatics
and Computing as the private cloud.

Our experiments demonstrate that our techniques are both secure and scal-
able. We successfully mapped 10 million real human microbiome reads to the
largest human chromosome over this hybrid cloud. The public cloud took
about 15 minutes to conduct the seeding and the private cloud spent about
20 minutes on the extension. Over 96/

1.5.2 SAGA on FutureGrid

An example for an interoperability project is the Simple API for Grid Ap-
plications (SAGA) [sag12, fg4]. It is based on an OGF standard [wwwe], and
defines a high level, application-driven API for developing first-principle dis-
tributed applications, and for distributed application frameworks and tools.
SAGA provides API implementations in C++ and Python, which interface to
a variety of middleware backends, as well as higher level application frame-
works, such as Master-Worker, MapReduce, AllPairs, and BigJob [sag]. For all

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 33

those components, we use FutureGrid and the different software environments
available on FG for extensive portability and interoperability testing, but also
for scale-up and scale-out experiments. These activities allow to harden the
SAGA components described above, and support CS and Science experiments
based on SAGA. FG has provided a persistent, production-grade experimen-
tal infrastructure with the ability to perform controlled experiments, without
violating production policies and disrupting production infrastructure priori-
ties. These attributes, coupled with FutureGrid’s technical support, have re-
sulted in the following specific advances in the short period (1) use of FG
for Standards-based development and interoperability tests; (2) Use of FG for
analysing and comparing programming models and run-time tools for compu-
tation and data-intensive science; (3) development of tools and frameworks;
(4) cloud interoperability experiments; and (5) data intensive applications
using MapReduce. SAGA will continue to use FG as a resource for SAGA
development for testing of other SAGA based components, to widen the set of
middleware used for testing to enhance the scope and scale of our scalability
testing; and to test and harden our deployment and packaging procedures.

More details about SAGA on FutureGird, can be found on the Portal [fg4].

1.6 Optimizing MapReduce

MapReduce has been introduced by the information retrieval community,
and has quickly demonstrated its usefuleness, scalability and applicability.
Its adoption of data centered approach yields higher throughput for data-
intensive applications.

One FutureGrid Project centers around the investigation and improvement
of MapReduce. As part of the project the team identifies the inefciency of
various aspects of MapReduce such as data locality, task granularity, resource
utilization, and fault tolerance, and propose algorithms to mitigate the perfor-
mance issues. Extensive evaluation is presented to demonstrate the effective-
ness of their proposed algorithms and approaches. Observing the inability of
MapReduce to utilize cross-domain grid resources motivates the proposal to
extend MapReduce by introducing a Hierarchical MapReduce (HMR) frame-
work. The framework is tested on bioinformatics data visualization pipelines
containing both single-pass and iterative MapReduce jobs, a workow manage-
ment system Hybrid MapReduce (HyMR) is developed and built upon Hadoop
and Twister. A detailed performance evaluation of Hadoop and some storage
systems, which provides useful insights to both framework and application
developers is provided. The work resulted in several papers and a PhD thesis
[Guo12].

34 Chapter in ’Contemporary HPC Architectures’

1.7 Sensor Cloud

The Pervasive Technology Institute, Anabas, Inc., and Ball Aerospace have
successfully collaborated to complete a cloud-based message passing middle-
ware, referred to as the Sensor Cloud [?, ?], to provide a research test bed for
sensor-centric/Internet of Things application development.

The objective of the Sensor Cloud Project was to provide a general–purpose
messaging system for sensor data. For our purposes a sensor is defined as
anything producing a time–ordered data stream. Examples of sensors include
physical devices like web cams, robots, or a Kinect motion sensing input de-
vice. However sensors can also be Twitter tweets, the results from some com-
putational service, even a PowerPoint presentation, anything that produces a
time dependent data series can be a sensor.

The components of the Sensor Cloud are the Sensor Grid Server for mes-
sage routing, a sensor grid building and management tool called the Grid
Builder and a robust Application API for developing new sensors and client
applications. The Grid Builder has an intuitive interface for setting sensor
policies as well as easy deployment and management of sensors across global
networks. The key design objective of the Sensor Grid API is to create a sim-
ple integration interface for any third party application client or sensor to
the Sensor Grid Server. This objective is accomplished by implementing the
publish/subscribe design pattern which allows for loosely–coupled, reliable,
scalable communication between distributed applications or systems.

The Sensor Cloud was developed and tested using the Future Grids Open
Stack Infrastructure as a Service (IaaS) cloud. The Future Grid provided
a scalable geographically distributed environment in which to measure the
Sensor Cloud system performance.

1.8 Educational Outreach

As described earlier, the hardware resources and middleware of FutureGrid en-
able the creation of user-defined, dynamically-provisioned environments and
support a “viral” user contribution model. Education and outreach in Fu-
tureGrid leverage its underlying technology to deliver a system that enables
advanced Cyberlearning (learning and teaching enhanced or enabled by cy-
berinfrastructure) and to lead initiatives to broaden participation by lowering
barriers to entry to the use of complex cyberinfrastructures.

In the context of education and outreach, FutureGrid technologies can aggre-
gate and deliver user-provided educational materials including the executable
software environment, middleware and applications where repeatable hands-

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 35

on experiments can be conducted. Thus, at the core of FutureGrid’s educa-
tional mission is the ability to create consistent, controlled and repeatable
educational environments in areas of computer and computational science re-
lated to parallel, largescale or distributed computing and networking, as well
as the availability, repeatability, and open sharing of electronic educational
materials. FutureGrid has deployed a distributed platform where educators
and students can create and access such customized environments for hands-
on education and outreach activities on cloud, HPC and grid computing.

Key components of the FutureGrid cyberlearning infrastructure are plug-and-
play virtual appliances and virtual networks, which are used to support hands-
on educational modules that run on self-contained virtual clusters. The target
audience here is prospective modal users, hence the focus is on usability and
low barrier to entry. There are three central principles in this approach: (1)
allowing users and groups of users to create and manage their own groups
through a Web-based portal, (2) automatically mapping these user relation-
ships to network connections among computer resources using self-configuring
Virtual Private Network (VPN) technologies; and (3) packaging of these en-
vironments in self-contained, self-configuring virtual appliances that make it
possible to effectively bring together a comprehensive suite of software and
middleware tailored to target activities (e.g. to study parallel processing in
the context of Condor, MPI, or Hadoop) while hiding the system’s underlying
complexity from its end users.

In terms of design and implementation, educational virtual clusters on Fu-
tureGrid can be created by end users, and leverage a pre-configured Grid ap-
pliance [WF11] image, which encapsulates software environments commonly
used. These appliances are deployed on FutureGrid using IaaS middleware
(Nimbus, Eucalyptus, or Openstack). Once appliances are deployed, a group
virtual private network (GroupVPN DecentralVPN) is self-configured to pro-
vide a seamless IP-layer connectivity among members of a group and sup-
port unmodified middleware and applications. Within a appliances, Condor
is used as the core underlying scheduler to dispatch tasks. In our system,
these tasks could be jobs students schedule directly with Condor, as well as
tasks, which are used to bootstrap MPI , Hadoop, or Twister pools on de-
mand. The GroupVPN virtual network and the Condor middleware are both
self-configured by using a peer-to-peer Distributed Hash Table (DHT) as an in-
formation system to publish and query information about available job sched-
uler(s) and assign virtual IP addresses. Users create on-demand MPI, Hadoop,
and Twister virtual clusters by submitting Condor jobs, which are “wrappers”
for dispatching and configuring the respective run-time systems. MPI tasks
are submitted together with the job that creates an MPI ring, while Hadoop
and Twister tasks are submitted to the virtual cluster using standard tools,
respectively. The entire system can be seamlessly deployed on a managed IaaS
infrastructure, but it is also easily installable on end-user resources the same
virtual appliance image is used in both environments. On a managed cloud
infrastructure, IaaS middleware is used to deploy appliances, while in desk-

36 Chapter in ’Contemporary HPC Architectures’

top/user environments, appliances are deployed with the native user interface
of a virtual machine monitor. The appliance has been tested on widely-used
open-source and commercial desktop and server virtualization technologies;
the same image can be instantiated on VMware, KVM, and VirtualBox on
x86-based Windows, MacOS and Linux systems.

FutureGrid has been used successfully in hands-on activities in semester
classes at universities, week-long workshops and summer schools, as well as in
short tutorials at conferences. Such educational and outreach activities have
included:

• “A Cloudy View on Computing”: A hands-on workshop for faculty from
historically black colleges and universities (HBCUs) conducted on June
2011 at Elizabeth City State University. The emphasis of the work
was on MapReduce concepts, and hands-on exercises using two differ-
ent MapReduce platforms. Lectures focused on specific case studies of
MapReduce, and the workshop concluded with a programming exer-
cise (PageRank or All-Pairs problem) to ensure faculty members have a
substantial knowledge of MapReduce concepts and the Twister/Hadoop
API. The workshop highlighted two specific educational MapReduce vir-
tual appliances: Hadoop and Twister.

• Computer science courses: FutureGrid was used in courses including
Distributed Systems and Cloud Computing for Data-Intensive Sciences
at Indiana University, Cloud Computing courses at the University of
Florida and at the University of Piemonte Orientale in Italy, and Scien-
tific Computing at Louisiana State University. FutureGrid was used to
build prototype systems and allow students to acquire in-depth under-
standing of essential issues in practice, such as scalability, performance,
availability, security, energy-efficiency, and workload balancing. Students
took advantage of FutureGrids dynamic provisioning infrastructure to
switch between bare metal and virtual machine environments.

• Hands-on tutorials: The tutorial ”Using and Building Infrastructure
Clouds for Science” was given at the SuperComputing11 conference The
tutorial had around 75 attendees, which were able to get accounts on
FutureGrid and interact with the infrastructure with hands-on activ-
ities that included the deployment of their own virtual machines on
the infrastructure. In addition to synchronous tutorials, the FutureGrid
portal hosts several self-learning tutorials that guide its users through
the core steps needed to configure, instantiate and access dynamically-
provisioned educational environments.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 37

1.9 Operational Lessons. We have already learnt several
unexpected lessons.

Technology Breakdown. One highlight is the breakdown of usage with the
over 100 FutureGrid projects divided 47% computer science, 27% technology
evaluation, 18% life science applications, 13% other applications, 8% Educa-
tion, and a small but important 3% Interoperability (some projects covered
multiple categories, thus the totalis greater than 100%) [vLDWF12].
Education is actually more important and successful than the fraction indi-
cates as a single class project implies 20-50 users of FutureGrid. Our usage
profile is very different from other US national infrastructures. We also found
that the diverse needs of users require significant user support but that many
users did not need huge numbers of nodes. Thus we changed plans and targeted
more funds at user support and less on hardware expansion. The ability to re-
quest both bare metal and virtualized nodes was important in many projects.
This was perhaps not unexpected but it is different from traditional envi-
ronments with fixed software stacks. Further cloud technologies are rapidly
changing on a 3-6 month cycle and in fact maturing but this requires a sub-
stantial effort from both software and systems groups to track, deploy and
support. These groups must collaborate closely and for example automatizing
of processes documented by the systems team through software development
is helpful in providing a scalable service.
Interoperability Experiments. We saw a interrest by the community in
interoperability experiments x1and infrastructure and have thus deployed end-
points for Unicore and Genesis II. In addition collaborations take place with
the Grid5000 [imp12b], the SAGA project [sag12], and the OCCI project
[wwwd] in the Open Grid Forum (OGF) [wwwe].

Acknowledgement

We like to thank the following people for their contributions to this chapter:
Fugang Wang, Shava Smallen, Ryan Hartman, Koji Tanaka, Sharif Islam,
David Hancock, Tom Johnson, John Bresnahan, Piotr Luszczek, Terry Moore,
Mauricio Tsugawa, Thomas William, Andrew Younge, and the rest of the
FutureGrid team.

jbullock
Typewritten Text

jbullock
Typewritten Text
This work was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Dept. of Energy, under Contract DE-AC02-06CH11357.

jbullock
Typewritten Text

jbullock
Typewritten Text

jbullock
Typewritten Text

38 Chapter in ’Contemporary HPC Architectures’

Bibliography

[AA06] Keith Adams and Ole Agesen. A comparison of software and
hardware techniques for x86 virtualization. In Proc. of the 12th
Intl Conf. on Architectural support for programming languages
and operating system, 2006.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D.
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Pat-
terson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above
the clouds: A berkeley view of cloud computing. Technical
report, University of California at Berkeley, February 2009.
Available from: http://berkeleyclouds.blogspot.com/2009/
02/above-clouds-released.html.

[Amaa] Amazon. Elastic Compute Cloud. Available from: http://aws.
amazon.com/ec2/.

[Amab] Amazon. Simple Storage Services. Available from: http://aws.
amazon.com/s3/.

[BFLK10] J. Bresnahan, T. Freeman, D. LaBissoniere, and K. Keahey. Cu-
mulus : Open source storage cloud for science. In SC2010, 2010.

[BFLK11] J. Bresnahan, T. Freeman, D. LaBissoniere, and K. Keahey. Man-
aging appliance launches in infrastructure clouds. In TeraGrid
2011, 2011.

[CB09] N.M. Mosharaf Kabir Chowdhurya and Raouf Boutaba. A survey
of network virtualization. In Computer Networks, 2009.

[cC05] Susanta Nanda Tzi cker Chiueh. A Survey on Virtualization
Technologies. Technical Report TR179, Department of Computer
Science,State University of New York, 2005.

[CD11] Weiwei Chen and Ewa Deelman. Partitioning and schedul-
ing workflows across multiple sites with storage constraints.
In 9th International Conference on Parallel Processing and
Applied Mathmatics, Torun, Poland, 09/2011 2011. Avail-
able from: http://pegasus.isi.edu/publications/2011/

WChen-Partitioning_and_Scheduling.pdf.

39

40 Chapter in ’Contemporary HPC Architectures’

[CHEa] CompreHensive collaborativE Framework (Chef). Available
from: www.chefproject.org/.

[Cheb] Yangyi Chen. Privacy preserving gene read mapping using hybrid
cloud. FutureGrid Project. Available from: https://portal.
futuregrid.org/project/18.

[Com12] Adaptive Computing. MOAB Cluster Suit Webpage. Web-
page, Last access Feb. 2012. Available from: http://www.

clusterresources.com/products/moab-cluster-suite.php.

[con] Condor: High Throughput Computing. Available from: http:

//www.cs.wisc.edu/condor/.

[DG08] J. Dean and S. Ghemawat. Mapreduce: simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, 2008.

[DvLW+11] Javier Diaz, Gregor von Laszewski, Fugang Wang, Andrew J
Younge, and Geoffrey C. Fox. Futuregrid image repository: A
generic catalog and storage system for heterogeneous virtual ma-
chine images. In Third IEEE International Conference on Coud
Computing Technology and Science (CloudCom2011), pages 560–
564, Athens, Greece, 12/2011 2011.

[DvLWF12] Javier Diaz, Gregor von Laszewski, Fugang Wang, and Geof-
frey C. Fox. Abstract image management and universal image
registration for cloud and hpc infrastructures. In IEEE Cloud
2012, Honolulu, 2012.

[DYvL+11] Javier Diaz, Andrew J. Younge, Gregor von Laszewski, Fugang
Wang, and Geoffrey C. Fox. Grappling cloud infrastructure ser-
vices with a generic image repository. In Proceedings of Cloud
Computing and Its Applications (CCA 2011), Argone National
Laboratory, Mar 2011.

[fg4] SAGA Simple API for Grid Application, FutureGrid Project.
FutureGrid Project. Available from: https://portal.

futuregrid.org/project/42.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University of
California, Irvine, 2000.

[FK99] I. Foster and C. Kesselman. Globus: a toolkit-based Grid archi-
tecture. The Grid: Blueprint for a New Computing Infrastruc-
ture, 1999.

[glo12] Globus Provision, 2012. Available from: http://globus.org/

provision/index.html.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 41

[Guo12] Zhenhua Guo. High Performance Integration of Data Parallel
File Systems and Computing: Optimizing MapReduce. PhD the-
sis, Indiana University, June 2012.

[HBB+05] Andreas Hanemann, Jeff W. Boote, Ericl. Boyd, Jrme Dur,
Loukik Kudarimoti, Roman apacz, D. Martin Swany, Szymon
Trocha, and Jason Zurawski. Perfsonar: A service oriented archi-
tecture for multi-domain network monitoring. In In Proceedings
of the Third International Conference on Service Oriented Com-
puting (ICSOC 2005). ACM Sigsoft and Sigweb, 2005.

[imp12a] Genesis II. Standards-Based Grid Computing, 2012. Available
from: http://genesis2.virginia.edu/wiki/.

[imp12b] Grid’5000, 2012. Available from: http://www.grid5000.fr.

[imp12c] The Network Impairments device is Spirent XGEM, 2012. Avail-
able from: http://www.spirent.com/Solutions-Directory/

ImpairmentsGEM.aspx?oldtab=0&oldpg0=2.

[jun12] The FG Router/Switch is a Juniper EX8208, 2012. Available
from: http://www.juniper.net/us/en/products-services/

switching/ex-series/ex8200/.

[KF08] K. Keahey and T. Freeman. Contextualization: Providing one-
click virtual clusters. In eScience 2008, Indianapolis, IN, 2008.

[KFF+05] K. Keahey, I. Foster, T. Freeman, , and X. Zhan. Virtual
workspaces: Achieving quality of service and quality of life in
the grid. Scientific Programming Journal, 2005.

[KH11] Geoffrey C. Fox Kai Hwang, Jack Dongarra. Distributed and
Cloud Computing: From Parallel Processing to the Internet of
Things. Morgan Kaufmann Publishers, 2011.

[KTB11] Sriram Krishnan, Mahidhar Tatineni, and Chaitanya Baru. my-
hadoop - hadoop-on-demand on traditional hpc resources. Tech-
nical report, 2011.

[KV04] Vassiliki Koutsonikola and Athena Vakali. Ldap: Framework,
practices, and trends. In IEEE Internet Computing, 2004.

[LKN+09] Alexander Lenk, Markus Klems, Jens Nimis, Stefan Tai, and
Thomas Sandholm. Whats inside the cloud? an architectural
map of the cloud landscape. In IEEE Cloud ’09, 2009.

[MCC04] Matthew L. Massie, Brent N. Chun, and David E. Culler. The
ganglia distributed monitoring system: design, implementation,
and experience. In Journal of Parallel Computing, April 2004.

42 Chapter in ’Contemporary HPC Architectures’

[MKF11] P. Marshall, K. Keahey, and T. Freeman. Improving utilization
of infrastructure clouds. In CCGrid 2011, 2011.

[MTF09] Andrea Matsunaga, Mauricio Tsugawa, and Jose Fortes. Cloud-
blast: Combining mapreduce and virtualization on distributed
resources for bioinformatics applications. In 4th IEEE Intl Con-
ference on eScience, 2009.

[nsf09] Futuregrid: An experimental, high-performance grid test-bed.
Web Page, 2009. October 1, 2009 - September 30, 2013 (Es-
timated). Available from: http://www.nsf.gov/awardsearch/
showAward.do?AwardNumber=0910812.

[OR02] Klaus-Dieter Oertel and Mathilde Romberg. The UNICORE
Grid System, Tutorial 3, August 2002.

[pap12] PAPI, 2012. Available from: http://icl.cs.utk.edu/papi/.

[RTM+10] P. Riteau, M. Tsugawa, A. Matsunaga, J. Fortes, T. Freeman,
D. LaBissoniere, , and K. Keahey. Sky computing on futuregrid
and grid’5000. In TeraGrid 2010, 2010.

[sag] SAGA BigJob. Available from: https://github.com/

saga-project/BigJob/wiki.

[sag12] Saga Project, 2012. Available from: http://www.saga-project.
org/.

[SBC+03] Constantine P. Sapuntzakis, David Brumley, Ramesh Chan-
dra, Nickolai Zeldovich, Jim Chow, Monica S. Lam, and
Mendel Rosenblum. Virtual appliances for deploying and
maintaining software. In LISA, pages 181–194. USENIX,
2003. Available from: http://dblp.uni-trier.de/db/conf/

lisa/lisa2003.html#SapuntzakisBCZCLR03.

[sca12] ScaleMP, 2012. Available from: http://www.scalemp.com/.

[SEHO07] Shava Smallen, Kate Ericson, Jim Hayes, and Catherine
Olschanowsky. User-level grid monitoring with inca 2. In Pro-
ceedings of the 2007 workshop on Grid monitoring, GMW ’07,
pages 29–38, New York, NY, USA, 2007. ACM. Available from:
http://doi.acm.org/10.1145/1272680.1272687.

[SNA07] SNAPP - SNMP Network Analysis and Presentation Package.
http://snapp.sourceforge.net/, 2007.

[SOHL+98] Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker,
and Jack Dongarra. MPI-The Complete Reference, Volume 1:
The MPI Core. MIT Press, Cambridge, MA, USA, 2nd. (revised)
edition, 1998.

FutureGrid - a reconfigurable testbed for Cloud, HPC and Grid Computing 43

[tak12] TakTuk, 2012. Available from: http://taktuk.gforge.inria.
fr/.

[TF06] Mauricio Tsugawa and Jose A. B. Fortes. A virtual network
(vine) architecture for grid computing. In 20th Intl. Parallel and
Distributed Processing Symposium (IPDPS), 2006.

[TJC+98] Brian Tierney, William Johnston, Brian Cowley, Gary Hoo, Chris
Brooks, and Dan Gunter. The netlogger methodology for high
performance distributed systems performance analysis. In In
Proc. 7th IEEE Symp. on High Performance Distributed Com-
puting, pages 260–267, 1998.

[vam12] Vampir, 2012. Available from: http://www.vampir.eu/.

[VDRB11] J.-S. Vöckler, E. Deelman, M. Rynge, and G.B. Berriman. Ex-
periences using cloud computing for a scientific workflow appli-
cation. In Workshop on Scientific Cloud Computing (Science-
Cloud), June 2011.

[vL06] Gregor von Laszewski. Java CoG Kit Workflow Con-
cepts. Journal of Grid Computing, 3(3-4):239–258, January
2006. Available from: http://www.mcs.anl.gov/~gregor/

papers/vonLaszewski-workflow-taylor-anl.pdf.

[vLDWF12] Gregor von Laszewski, Javier Diaz, Fugang Wang, and Geof-
frey C. Fox. Comparison of multiple cloud frameworks. In IEEE
Cloud 2012, Honolulu, 2012.

[vLFW+10] Gregor von Laszewski, Geoffrey C. Fox, Fugang Wang, Andrew J
Younge, Archit Kulshrestha, Gregory G. Pike, Warren Smith,
Jens Voeckler, Renato J. Figueiredo, Jose Fortes, Kate Keahey,
and Ewa Delman. Design of the futuregrid experiment manage-
ment framework. In Proceedings of Gateway Computing Environ-
ments 2010 (GCE2010) at SC10, New Orleans, LA, 2010. IEEE.
Available from: http://grids.ucs.indiana.edu/ptliupages/
publications/vonLaszewski-10-FG-exp-GCE10.pdf.

[vLYH+09] Gregor von Laszewski, Andrew Younge, Xi He, Kumar
Mahinthakumar, and Lizhe Wang. Experiment and Work-
flow Management Using Cyberaide Shell. In 4th Inter-
national Workshop on Workflow Systems in e-Science
(WSES 09) in conjunction with 9th IEEE International
Symposium on Cluster Computing and the Grid, pages 568–
573, Shanghai, China, May 2009. IEEE. Available from:
http://cyberaide.googlecode.com/svn/trunk/papers/

09-gridshell-ccgrid/vonLaszewski-ccgrid09-final.pdf.

44 Chapter in ’Contemporary HPC Architectures’

[WF11] David Wolinsky and Renato Figueiredo. Experiences with self-
organizing, decentralized grids using the grid appliance. In Pro-
ceedings of the 20th International ACM Symposium on High-
Performance Parallel and Distributed Computing (HPDC-2011),
San Jose, CA, June 2011. ACM.

[wwwa] Apache Hadoop! Webpage. Available from: http://hadoop.

apache.org/.

[wwwb] FutureGrid Portal. Webpage. Available from: http://portal.
futuregrid.org.

[wwwc] Nimbus Project. Available from: http://www.nimbusproject.
org/.

[wwwd] Open Cloud Computing Interface (OCCI). Webpage. Available
from: http://occi-wg.org/.

[wwwe] Open Grid Forum. Webpage. Available from: http://www.ogf.
org/.

[wwwf] Open Source Eucalyptus. Webpage. Available from: http://

open.eucalyptus.com/.

[wwwg] OpenNebula. Webpage. Available from: http://opennebula.
org/.

[wwwh] OpenStack. Webpage. Available from: http://openstack.org/.

[wwwi] Simple Linux Utility for Resource Management (SLURM). Web-
page. Available from: https://computing.llnl.gov/linux/

slurm/.

[wwwj] xCAT Extreme Cloud Administration Toolkit. Webpage. Avail-
able from: http://xcat.sourceforge.net/.

[xse12] XSEDE - Extreme Science and Engeneering Environment, 2012.
Available from: http://www.xsede.org.

Index

Accounting, 27
Authentication, 26
Authorization, 26

Cloud, 2
Accounting, 27
Sensor, 33

Dynamic Provisioning, 20
Dynamic provisioning, 15

Education, 34
Eucalyptus, 12
Experiment management, 24

DevOps-based, 26
Interactive, 25
RAIN-Based, 26
Workflow-based, 25

FutureGrid, 1
Architecture, 8
Experiment management, 24
Image management, 15
Network Impairment, 4
RAIN, 15
Resources

alamo, 5
bravo, 5
delta, 5
foxtrot, 5
hotel, 5
india, 5
sierra, 5
xray, 5

Ganglia, 24
Grid services, 14

HPC accounting, 27
HPC services, 14

IaaS, 11
Image generation, 17
Image management, 15
Image registration, 19
Image repository, 18
Inca, 23
Information service, 22
Infrastructure as a Service, 11
Intelligent resource adaptations, 27

LDAP, 26

MapReduce, 13, 32
Meta-scheduler, 27
Monitoring service, 22

Netlogger, 23
Nimbus, 11

infrastructure, 11
platform, 12

OpenStack, 12
Outreach, 34

PaaS, 13
PAPI, 15
Performance service, 22
perfSONAR, 24
Platform as a Service, 13
Portal, 28
Project management, 24

RAIN, 15, 20, 26

SAGA, 32

45

46 Chapter in ’Contemporary HPC Architectures’

SNAPP, 24
Symmetric Multiprocessing, 14

User Level Virtual Networks, 12

Vampir, 15
ViNe, 12

jbullock
Typewritten Text
The submitted manuscript has been createdby the University of Chicago as Operator of ArgonneNational Laboratory (``Argonne'') under Contract DE-AC02-06CH11357 with the U.S. Department of Energy.The U.S. Government retains for itself, and othersacting on its behalf, a paid-up, nonexclusive, irrevocableworldwide license in said article to reproduce,prepare derivative works, distribute copies to thepublic, and perform publicly and display publicly, by or onbehalf of the Government.

